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Numerical Calculation of Steady Two-dimensional

Axi-symmetrical Turbulent Boundary Layer

of a Compressible Fluid

Wang Ying-shih

(Institute of Mechanics, Academia Sinica)

This paper employed a momentum equation
expressed by the stress tensor to derive the momen-
tum equation of a non-rotational steady axi-
symmetrical turbulent boundary layer of a compressible
fluid in the axi-symmetrical coordinate system. It
was found that if the flow in the duct was to be
treated as viscous fluid everywhere then the curva-
ture of the duct and the rate of variation of the
curvature along the direction of the flow cannot be
too large. This has not been proven in any existing
literature.

Based on the set of equations proposed in this
paper, we compiled a program and computed an example.

SYMBOLS

A cross-sectional area

A, B, C coefficients of 0 difference equations

Au, Bu, Cu coefficients of the velocity u difference
equations

A', B' coefficients of transformation

a, b coefficients of the conduction terms in the
conventional conservation equations

c coefficient of the diffusion term in
conventional conservation equations.

d source term in the conventional conservation
equations

F' friction face per unit length of the wall on
the fluid



gl" g2 " g3 ' g4 '
g52 96 coefficients of relevant terms in the

derivation of the difference equations

Hi  heat of formation of the ith component
h enthalpy

h1, h2, h3  Lame coefficient

J flux in the positive y direction

1 mixing length
61" mass transfer rate

mi  mass fraction of chemical reaction
composition

N number of nodal points crossing the
stream line

p pressure intensity

R gas constant

S1 , S2, S3 , S4  relevant coefficients of the source terms in
the difference equation of velocity u.

T absolute temperature

u velocity component corresponding to the
x-direction

V velocity vector

v velocity component corresponding to the y
direction, velocity component corresponding
to the r direction

V1, v2, v3  velocity components with respect to the
av8, y increasing direction

x, y, 6 axi-symmetrical coordinate system

Yl characteristic thickness of the boundary
layer

, 8, y conventional orthogonal coordinate system

k curvature at boundary I

ITiJ stress tensor

T ij viscous stress tensor

6ij Kronecker 6

dynamic viscosity coefficent

p density
ah  Prandtl number
ai  Schmidt number

2



Tshear stress
0conventional strain quantity

* flow function

w non-dimensional flow function

*refer to Figure 1 for definition

L 0: superscript
retardation value
subscript

d in the duct

D, D,DD ,DD- nodal points controlling the difference
UM ,M+'U,- U +"on the volumetric boundary

E outer boundary

f occupied by the fluid

h thermal

1 inner boundary

J chemical composition i
t turbulent

eff effective

This paper was received on June 14, 1978.
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In the actual fluid flow process, especially under heat

transfer and mass transfer conditions, the effect of viscosity

is very important. Furthermore, most of the viscous flow

process is a turbulent flow. Therefore, in order to solve

this type of a flow process perfectly it must begin with the

solution of the turbulent viscous flow equation set. However,

the work load involved in obtaining solution to this set of

equations is rather large. Until the late sixties with the

development of computational methods and computers it was then

possible to work in this area.

The viscous flow problem can be divided into viscous flow

with return flow and the boundary layer flow without return

flow. These two types of flow have different types of basic

equations. Their solution and the treatment of boundary condi-

tions are not the same[l - 3 ] . This paper mainly discussed the

calculation of fluid field of the turbulent boundary layer of a

compressible fluid in a two-dimensional axi-symmetrical coordi-

nate system.

I. Basic Equations and Discussion of the Content

When a compressible fluid undergoes non-rotational axi-

symmetrical flow in a axi-symmetrical coordinate system as

shown in Figure 1, the boundary layer kinetic equations under

steady- state are shown as follows (detailed derivation see

Appendix 1):

Figure 1. Axi-symmetrical coordinate system. Key: 1.
boundary, 2. axis of symmetry.
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continuity equation "(Pru)+ 1 (1).

momentum equation PU ix + 09 By (2)

mass transfer equation

Pu Ox Oy --- y-(Jr)+R, (3)

energy equation Pu q- + P O + SH1,-ur) 1 (4)

&Z ey r &Y\ T I

If the fluid satisfies the conditions of a gas completely,

then

_. -(5 )
P

If we neglect the variation of C for each component and

also neglect v , then the stationary enthalpy can be defined

as:

kh C, T Hm, + u- (6)

The above equations are applicably in the laminar flow

region of the boundary layer as well as in the turbulent region

of the boundary layer. When it is used for turbulent boundary

layer, all the physical quantities should be expressed using

the time average values.

At the moment let us assume that the momentum, mass trans-

fer, and heat transfer respectively obey Newton's law, Fisk's

law, and Fourier's law in the turbulent boundary layer similar

to what happens in the laminar flow boundary layer. The

exchange coefficient in the entire boundary layer can be

expressed using the effective values, i.e.

(0(7)

- - ,,. . (7.



JTT-) (9)

In the layer flow region iat, am, and u,.u correspond

to the viscosity, Prandtl number, and Schmidt number of the

fluid, respectively. The effect viscosity inside the turbulent

flow region is defined by adopting the mixing length concept

of Prandtl which is:

,€. - p O- (10)

and f-.u and aiat are the effective turbulent flow Prandtl

number and the effect turbulent flow Schmidt number, respect-

ively.

Equations (2), (3), and (4) are of the conservation equa-

tion type. The left hand side- of the equal sign is the convec-

tion term. The first term on the right is the diffusion term

and the second term is the source. If the source term is known

or can be obtained through another expression, then the above

ten equations can give solution to the ten unknowns p,T,,u,u,

1,I aJ ,A During the solution seeking process the

values for I, ui,, 01. can be obtained from certain expres-

sions or exp~rimental data [2 ].

In order to obtain the solution more conveniently, let

us transform the above equations into the von Mises coordinate

system (x-4 coordinate system) and bring in the concept of the

flow function.

Because

6
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Equations (2), (3), and (4) then become

au a I 4L (2')

A. __ j + (3')
ax alp PO 3'

Oz 04,O'_+ (1>

Because equations (7), (8), and (9) can be transformed

into partial derivatives with respect to T, Jj, and Jh

respectively, therefore equations (2'), (3'), and (4') become

the classical parabolic curve equation with a source. Hence-

forth, it is in principle possible to adopt numerical methods

which are suitable for parabolic equations to process the above

set of equations.

Before proceeding further in seeking for the solutions of

the above equations, we are going to carry out a discussion on

the above mentioned momentum equation.

In the derivation of momentum equation in the axi-

symmetrical coordinate system (see Appendix I), the first

obtained equation is

Ou O Or + gos r (1-4)
ex8  ayW ay r ax

Only general boundary layer assumptions are made in the

deviation process. The applicable region of equation (1-4) is

relatively wider. It can be applied not only to the boundary

' er .ow of a revolving surface on the basis of the axi-



symmetrical coordinates, but also to the jet boundary layer

flow on the basis of cylindrical coordinates.

As for the analysis of axi-symmetrical jet flow it is

generally better to use the cylindrical coordinate system. At

this time the thickness of the boundary layer and the radial

length belong to the same order of magnitude. Therefore, the

momentum equation of the boundary layer of a steady two-

dimensional axi-symmetrical jet flow can be derived

S 1 --- (r)- -  (14)
Ox I dx

where u and v are the velocity components along the x and r

directions, respectively.

Comparing equation (1-4) with equation (14) and also referr-

ing to Figure 1, we can see that when &-*o and ,-.0 the

orthogonal axi-symmetrical curve coordinate system is reduced

to a cylindrical coordinate system. Equation (1-4) becomes

equation (14). Earlier Mangler, in his treatment of the laminar

boundary layer problems, did not keep the second term on the

right hand side of equation (1-4) through order of magnitude
comparison. Mathematically, it transformed the boundary layer

problem of a revolved body into a planar boundary layer problem

for processing in order to simplify the procedure necessary to

obtain the solution [ 5
. Presently, because of the use of numeri-

cal computations and through the establishment of computational

programming based on the equations stated above, we not only

can solve the boundary layer problem of a revolved body but also

can deal with the boundary layer problem of the axi-symmetrical

jet flow and the boundary layer problem of the planar flow.

In order to raise the accuracy of calculation in the various

regions in the boundary layer, the choice of the difference net-

8
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work before the establishment of the difference equations is

very important. If we use the simple x-1 coordinate system to

establish the network then in the region where x is small it is

not possible to clearly express the variation of the flow

field due to the small number of network nodal points. If for

this reason the coordinate lines for 0 value becomes much more

dense in order to have more nodal points in the x direction in

the area where x is small, then there are large number of

unnecessary nodal points in the area where x is large.

In overcoming the above difficulty, some authors used the

x-u/um or g -y/y coordinate system. In this paper we used

the Patankar-Spalding coordinate system mentioned in Reference

[2] which is the x-w coordinate system. This type of method

which transforms the ordinate of the orthogonal coordinate sys-

tem into a relative value is to arrange so that the number of

network nodal point to be the same during every step as the

computation progresses in order to improve the accuracy of the

computation in the area where x is small. Based on Reference [2]

'P1 (15)

Figure 2. Diagram for Coordinate Transformation.
Key: 1. Constant.

Here the coordinate relationships between x.,,, and ro are

shown in Figure 2. From this we get the following eq.:a-ions

*1 - ! - (6

dx dx

9P



, - -f'A- ,, ,(17)

where - ,, --
dx a

if f

iI and %E represent the rate of mass transfer across the inner
and outer boundary, respectively.

Using equations (16) and (17) we can transform the set of

conservation equations (2'), (3'), and (4') into the following

general form:

+ a +a L +( d (18)

where - , (. 01)
6 - ( rCrsW' - - 0,)

rC a -?'U 4,a-(4'K -

The source term, however, has different content which

varies with the characteristic of the conservation equation1

Characteristic Content
of the of

4 Equation Variables term d

momentum equation u -, -

mass transfer m R.
equation (p-)

energy equation h* (

iThe source term of the energy equation is derived after
letting 0 ,.g.a..,

10
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Equation 18 is still a parabolic function and its numeri-

cal solution is obtained through the establishment of a differ-

ence equation described in the following section.

II. The Establishment and Solution of

the Difference Equation

Let us take a finite controlled volume in the flow field

as shown in Figure 3 and then carry out integration within

the limits of the defined finite control volume to establish

the difference equation. The use of this method to establish

the difference equation has apparent advantages over the use of

the Taylor series expansion method whether from the point of
view of satisfying the physical concepts of the conservation

equations or for the prevention of serious mathematical error[3l

Based on Appendix II, the difference equation is as

follows:

g, o + g20D + g30D- + g4 - - OD) - (19)<I + d. + )(oPLJ-0.)

After simplification

0, - ,40,+ + B.V,- + C (20)

where

f +5, +g,- (OU/).
S -- 96 - 93

ga + g. + g' - (CMl00).

- . - .-
g, + g, + g4 -

For the conservation of momentum equation, due to the differ-

11
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ent contents from treatment of the source term (see Appendix

II), the difference equation corresponding to equation (20)

is:

uO -,r 4.w1 + B.u.- + C. (21)

where A. - gi + S,

93+ g' + g6 - S

B.- 96- 9 + S3ga + g' + g' - S,
C. S4 $ - g .

ga + gs + g, - S3

Based on the derivation in the Appendix it was found the

equation (19) is the six point unexplicit difference form which

has the characteristic of stability for any progressing steps.

The coefficients of the linear algebraic equations repre-

sented by equation (20) form a three diagonal linear matrix and

solution can be found using an iterative method. For that

equation (20) is simplified further as:

-, @,- Aio,+, + Bi (22)

where
- -B- -- , B - B,:, + C. " A1, B - B + C

Because 1 and PN+3 are determined by the boundary condi-

tions, when the 4i and 4N+3 values are not given on the

boundary, then their coefficients are zero. Here we theoreti-

cally solved the problem in seeking for a solution.

12



14U+ DD"

t /D-

ix

x., X.

Figure 3. Controlled Volume

When the nodal points are chosen to be more dense, then

the linear distribution of € value assumption in Figure 3 (On

the €- w plane) has already met the accuracy requirement for

all the points in the flow field. But because the variation

of €D value is steeper near the boundary, if we still use the

linear variation of the true value on the boundary, distortion

will occur. Especially when the values of relativeflux and

transfer rate of a physical quantity on the boundary are to be

determined, it would cause a large error. Because when these

values are determined, it is necessary to use the gradient of 0

on the boundary and this gradient can not be replaced by the

simply linear variation between the true l, value on the

boundary and the t3 value at its neighboring nodal point (refer
to Figure 4). Therefore, during the process of solving for the
the boundary layer problem, a sliding value problem on the

boundary was proposed. That is it is possible to obtain the

sliding value ¢D (or Dn+2) based on the distribution curve of D
on various boundaries. The actual methods can be obtained by

referring to Reference [2].

13



Because in the calculation of the sliding value we must
consider the distribution of u on the boundary, therefore the

shape of the distribution curve of u on the boundary would

directly influence the accuracy of the results of computation

of the boundary layer flow. Because the u value near the

boundary is very small, from the set of conservation equations

(2), (3), and (4) we can see that the convection along the x -

axis can be neglected. This transforms and simplifies the flow
near the boundary into the model of the Couette flow. Based on

the characteristics of the Couette flow on the boundary, we

can derive the value of u and the exponent of the distribution
curve of the value of (D.

ORO, I A • "

"* I

(-i)

Figure 4. Definition of Sliding Value.
Key: I boundary, 2. True variation of D value, 3. True
variation of 0 value, 4. E boundary.

Regarding the treatment of the source term : For
dx

the flow with given iL distribution, we can directly use
do

the above method to solve the problem. But for those problems
with the distribution of IL. yet to be determined in the flow

dX
process (such as the boundary layer flow problem in the restric-

ted duct), it is relatively more complicated. Rigorously

speaking, the value of the distribution of *-t should be

14
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resolved based on a iterative computation method. This requires

to save all the parameters relevant to IL in the flow field
ds

and to carry out multiple iterations. This would significantly

increase the computation time and memory units required which

eliminates the advantages short time and few memory units

necessary for the original progressing method used to obtain

the solution to the parabolic equation. For that an approxi-

mation method is used.

The expression for can be derived based on the
do

continuity equation and momentum equation of the one-dimensional

flow as follows:

P° 2idt+ I.+ L d (23)

therefore
~ dil

P 97'

F' N dds thii d.4 tii dT
J.T- - Z + _AT AT T. (24)

where - rp uy/ rpudy, 7 " rpuTdy 4 rpady

For gas flow of low Mach number, the effect of pressure

on density can be neglected. Thus the second term of the

denominator on the right side of the equal sign no longer exists.

As for the physical meaning of M4 d , it can be looked

at as a discussion of a compressor flow problem. When the

computation progressed to ,- . , it was found that the

results were that the fluid did not fill the entire cross-section

of the compressor. This indicated that the original given It
dx

15



value was incorrect. We should have started with a new assump-

tion of - to obtain the cross-section of the fluid until it
dX

finally matched the cross-section of the compressor. At the

present moment this method is not used. Instead the computation

proceeds to X -* . But the ' __ value which has an effect
dl

on the *L value is calculated using the following equation
ax

dA - (A, - A,..) (25)
IX Xv - X0

This is to say that the difference in the .4f value at the
is

previous stop (x-x.) is partially compensated in the effect

of area variation at the next stop (Z-x) In the actual

calculation, a partial value of equation (25) should be used.

Only by doing so that the instability of the calculated A1 can

be prevented.

In using the above method, it should be noticed that Af,D

and Ad,D must be very close at all times. They should be the

same at some boundary points. Otherwise the approximation of

the calculated flow field has no meaning whatsoever. (See

Figure 5).

Figure 5. The physical meaning of dA/dx

As for the amount of oartial value of equation (25) that

should be used, it depends on the closeness of AfD and Ad,D

which is checked during the computation process. For an approxi-

mate straight tube flow, we can use 0.1 - 0.2 as the correction

16 j



coefficient. For compressors which compress quickly, the
correction coefficient is very small or is given by sections.

III. The Contents of the Computation Program and

Computed Example

Computation program has been compiled based on the above
discussion. Due to the limitation in pages, the block diagram
and the actual content of the relevant program are omitted. The
computer used to process the program was a Felix C-256 computer.

We have used this program to calculate a ring shaped com-
pressor (Figure 6). With regard to the axial static pressure
variation, the calculated and experimental values were compared
and shown in the figure. The results are pretty close.

• *jI//jl/jJJ iIl/I tI11

ItI~

11 I
- 3

,1.010

0 0

0 0.2 0.4 0.6 0.5 1.0 pt*# 4

096 it X 9 0 8

--~ -1W~(a) VU1E&6%A*1*4L 7 Mb VKEED&MMS~7 9

Figure 6. Computer Example. Key: 1. P/P inlet, 2. L/Ltotal length, 3. direction of flow, 4. symmetry axis, 5. experi-
mental value, 6. calculated value, 7. (a) axial static pressure
variation of the compressor, 9. (b) geometric diagram of the
ring shaped compressor.
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IV. Closing Remarks

This paper based on the momentum equation expressed by

stress tensor published in Reference [6] to derive the momen-

tum equation of non-rotational steady axi-symmetric flow of a

compressible fluid in the turbulent boundary layer in the axi-

symmetrical coordin te system. It can be found very clearly

from the derivation and discussion that equation (2') (similarly

equations (3'), (4') and (18)) is not only suitable in solving

the boundary .Lyer problem on the surface of a revolved body

but also appl' a'.le to the boundary layer problem of an axi-

symmetric 4 et flow.

On the basis of Reference [2], the computer program after

being partially modified by us can be applied to the following

two situations from actual computational verification.

1. When the entire flow in the duct is treated by taking

the viscosity into consideration, if the curvatore of the wall

surface of the duct is not too large and the rate of curvature

change in the direction of the flow is also not too large, then

the entire flow field can be calculated based on this method.

2. If the curvature change of the duct is large then it

is necessary to combine this method and the non-viscous flow

in the main flow method to compute the solution.

Appendix I

The Deviation of the Continuity Equation and the Momentum

Equation

When the compressible viscous fluid flows steadily in

space, its continuity equation and momentum equation (without

external force) are as follows:

18



v.(pv)-o (I-1)

( IV.- Vx (V,,v)V .. (1-2)

Based on the vector and tensor operations introduced in

Reference [6], for the non-rotational axi-symmetric flow in the

axi-symmetrical coordinate system (Figure 1) considering that

ka and S, are very small, then .m, h.-i, and ,-r

The coordinates corresponding to ,.p,r are ,..o The com-

ponents correspond to the vector quantity V are r-,',-w. and
,,-0 . In addition, all the variations in the e direction

for all the variables can be neglected [ 4]

Therefore, the continuity equation can be written as the

following:

A0 (AM) + NY CO) .

The equation of the x-direction momentum component is

tOUfd di.. air, GinO5 coso sina*, , ,.. ,. .ro€. ,.
Tz + O --P x ."'y +'" X. + X. -; V X00-V

The relation between the stress tension 7 and the viscous

stress tensor T is as follows:
aID 6 =r1 + ddp

where 8ij is the Kronecker 6, we get

6re 1' L T.p in* I. Col w. n0 m r,. sin 0
u-4...; ax - - + ++ , ,

Based on the qssumption made by Prandtl on the boundary

layer, the above equation can be simplified into

Poo do! + j all - 01 , (I-3)

19



After considering the effect of curvature, we can obtain
the momentum component equation in the y equation as

_L do

Therefore

7 dy

Since the boundary layer belongs to the 0(8) class, the

static pressure difference in the y direction in the actual

boundary layer can be ignored.

Based on the conditions of the non-rotational axi-

symmetrical flow and from an order of magnitude comparison,

we know that the momentum component equation in the e direction

no longer exists.

For simplification, let T represent T and also consider
xy

"*- i and AL-A - (because the static pressure difference
as dX

in the y direction can be ignored). Equation (1-3) can then

be transformed into the following:
-I

pi + P" w c + - (1-4)

or

pi du + PV an (2)

As for the mass transfer equation (3) and energy equation

(4), they can be derived using the same procedures as described

above. It will not be repeated here.

2O
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Appendix II. The Principles Used in the

Derivation of the Difference Equation

When establishing the difference equation, the relation

between o-i and *-z used were linear and stair-case shaped

distributions, respectively. As for the 4) value used in _L

the D value at the downstream xD was used. This could insure
[2]the stabJlity of the difference computation 2

. But the coeffi-

cient a, b, and c were obtained from the 4 value at x U upstream.

The difference format of the equation was then established based

on the integration with respect to the entire control volume for

all the terms in equation (18).

The source term d has different content corresponding to

different conservation equations. For mass transfer and energy

conservation equations, we assumed that in the entire control

volume the value of d was uniform and equal to the value dD

(i.e. d-w or d-x varies as a stair case shaped variation).

For the momentum conservation equation, the corresponding

value of D is u. The calculated result of u would simultaneously

influence the solutions to the mass transfer and the energy con-

servation equations. Therefore the importance of the more

accurate assumption of the source term distribution in the momen-

tum conservation equation becomes more apparent. Let us assume

that the variation of d-w between network nodal points was linear

and the variation of d-x between the network nodal points was a

staircase shaped variation.

Based on the above principles, we can derive the difference

equation of the mass transfer or energy conservation equation

,*go + g.-,(G* -Ou) - (00- o-) + d. * ()., - 0.) (19)

21
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where

4 (o - ' ,"o) Z(Oo WO-.,) 4 r o

3
I, 4(0 -'.) -4

I (N - too-) • h (w,-+ 3e)
41 " ( - . +o - "OIl -k )-

foot 3 ,4- -" ( - 3.Aw+ - WO-) " .

4 Ca . - -) 4(lt - a-

I- co-o-)(,a,-eo-)

Similarly, the difference equation of the corresponding

momentum conservation equation can be derived

Z'110+ + goDo + Soma + S. I,(,,o+ - No) - i, - so-) + S"Vo+ + Soa + Somao- + So

where il, go, go. 9,, go. 94 were defined as above, and

S*~ ~ O COD 4 -~u* (~) WS, - i4P.'+ ,Jo* -77 o a

o o 3 dp
, 4 -).

. s - 'p.-e . \ai,-+"

• " i

S. )/WD--o-)]

+ I W-,,,.
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Abstract

A momnum equation of .steady two-dimensional au-symmetrical turbulent bound-
ary layer is derived employ~g stress tensor analysis. It is found that if the flow in
a duct is to be treated us viscous everywhere, the equation is valid only if the curvature
of the duct and the rats of change of the curvature of the duct in the flow direction
are small. These requirements so far have not been verified by previous authors.

In this paper, a computer program for solving the governing equations has bLen
completed and a numerical example is selected to show its degree of accuracy.

23

-. . All



LAMINAR HEAT TRANSFER WITH MASS

INJECTION AND CHEMICAL REACTION

Zu Tie-lin1

In order to simplify the boundary layer
problem with mass injection and chemical reaction,
a general stoichiometric formula has been derived.

Using the chemical equilibrium as an example we
performed an analysis. The calculated results were
found to be consistent with the experimental ones.
When the amount of injection is zero, the relevant
data were in good agreement with the results listed
in Reference [4]. Finally, it was pointed out that
with the increasing available energy of the exo-
thermic reaction the effect of Lewis number Le on
the heat transfer decreases.

In the boundary layer problem with mass injection and

chemical reaction, one usually assumes that the Lewj4 numbe

Le = 1 in the combustion loss calculation in order o obtain

relatively simple results. Along with increasing amount of

injection and variation of other relevant conditions, this

assumption would cause significant errors in the results of

calculated heat transfer and effective combustion heat. Lees[l]

has provided an analytical solution for Le # 1 which is expressed

by Blasius function to the wall surface chemical equilibrium

problem of a frozen boundary layer with a constant transfer

characteristic. This paper studied the affect of chemical

reaction on the heat transfer through a discussion of a chemical

equilibrium boundary layer with Le 9 1. We have carried out a

This paper was received on December 9, 1977.
1 This paper was written in 1964 during the period when the
author was working at Institute of Mechanics of Chinese
Science Academy. It was presented in the Combustion Techno-
logy Meeting at Daireu in 1964. The author's present place of
employment: Central Weather Bureau, Institute of meterology
research, atmospheric weather research department.
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discussion on the equations of boundary layer chemical reaction

and wall surface conditions and obtained an universal generali-

zed stoichiometric formula. Using the assumption imposed by

Lees, we provided the numerical solution to a series of examples

for the equilibrium boundary layer. After further making a

linearity assumption, we obtained an approximate equilibrium

solution similar to Lees' frozen solution.

In the constant transfer assumption, the most worthwhile

discussing subject is the applicability of using Fisk's Law to

express the mass flow and taking Le as a constant. The author

has written an article on this subject with Yao Kang-Chun and

Hu Cheng-Hwa in 1964 (unpublished). That paper compared the

heat transfer calculated in the decomposition of air using the

multiple element method and the two-element method with a con-

stant Le number. Its conclusion was that when the constant Le

number was properly choseo we could obtain the same heat trans-

fer as the one calculated by the multiple element method.

(Figure 1). As for the canbustion reactions in decomposed air,

as long as a proper Le number is chosen, we will get the same

result.

I. Basic Equations and Generalized

Stoichiometric Formula

The continuity, diffusion, momentum and energy (expressed by

the frozen enthalpy HT)equations of a steady laminar boundary

layer with chemical reaction are:

(pu,')4 + (p.r'), 0 (1)
pK i, + pK,, - - I, + co,(i.- J, 2,. .- ) (2)

PIM, + PVUj, - -. + (POO)3

(3)
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Figure 1. Heat Transfer Calculated Using the Multiple
Element Method and Two-Element Method. Key: 2. Multiple
element method, 3. Two-element method .. -mL

'1L 3
Where r is the radius of the revoluted body; when c - 0

it is a two dimensional flow; When c = 1, it is a three

dimensional axi-symmetrical flow; P is the density of the mass;

u and v are respectively the velocity components in the x and

y direction; x and y are respectively coordinates along the

direction of the object and that perpendicular to the surface

of the object; the subscript i represents any element in the

complete element 1; K is the concentration (mass ratio); J is

the mass flow; w is the chemical rate of formation; P is the

nt



iX1
pressure; p is the viscosity; the frozen enthalpy H 7 At i,

* KjhI.hluftc,,dT; e,,, is the isobaric specific heat of elementI,,

i; the isobaric specific heat of the gas mixture "4,.. K.c, ;

K is the thermal conductivity; the Praneltl number Pr = ?
0k

h is the enthalpy of formation at OK for a unit mass of

element i.

Let us assume that every element is a perfect gas, then

Ai, - pART (5)
PM - pRT (6)

When K, and M is the molecular weight of the ele-

ment i; R is the conventional gas constant. Let us assume that

the mass flow can be expressed using Fisk's Law, which treats

the diffusion coefficients Dij of the two elements the same

(both to be D) and only considers concentration diffusion, then

- -pDK,, (7)

When w. is frozen at zero and it is a function of the local

p, T, and Ki when there is chemical reaction. The functional

relation is given by the chemical kinetic conditions. Let us

assume that there are a total number of s independent chemical

reactions in the problem we are considering:

RIM, - o (P - 1, 2,,.,, (8 )

where npi is the stiochiometric coefficient of element i in the

pth chemical reaction; Xi is the molecular formula of element

i. Every reaction in equation (8) has only one independent

reaction rate. s is usually smaller than 1. In order to solve

for the mass ratio of the entire 1 elements, the 1 - s diffusion



equations necessary to be preserved are usually transformed

into the frozen form using the conservation of element method.

This method is mandatory for equilibrium problems. For non-

equilibrium problems, the calculation procedure can be simpli-

fied and it is irrelevant whether the mass flow is expressed

using equation (7). In order to overcome the disadvantages of

using the conservation of element method such as the inconven-

ience to put it into a routine form and inability to choose

the reference element, this paper obtained a "generalized

stoichiometric formula."

Let us make the reaction rates of 1 - s elements out of

the 1 elements in the 1 - s reactions , to be indep-

endent, then the rate of formation of each element can directly

be expressedoy the linear combination of the s independent rates

of formation:

'1 m,- w (i-te2,'.. (9)

where

a, M, (10)

If we consider the problem as a linear space problem, then this

set of independent rates of formation can be mathematically
treated as a set of independent vectors of a "basis". The

coefficient ai then becomes the coordinate under this "basis".i
The wp appearing in equation (9) is not convenient to use, it

is necessary to select a new "basis" (w,m,..), which is

expressed by the total reaction rate. The reaction rate not

included in the new "basis" or the non-independent reaction

.4 rate can be expressed linearly using the new "basis":

w- Xl~w m Q-+ 1, +2,...,l) (11)

i mpel
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where

f . .. 0-1,0! \ (12)

Equation (11) is the generalized stoichiometric formula. The

use of this formula is especially convenient for problems

with complicated chemical reactions. Let us define the symbol:

and then equation (2) can be written as:

VA (14)

Substituting equation (14) in equation (11), we get

0- (15)

(16)

Equation (15) is the preserved (1 - s) diffusion equations in

the frozen form. The remaining s equations are provided by

the s chemical reaction conditions. When the chemical reactions

are in equilibrium, the s conditions are

(K,) ,) - (17),. M ,/P) - ,

where .),is the balancing constant of the pth reaction. If

we sli_ ntiy change the operating symbol je by substituting w i

with the rate of formation per unit area mi, then equation (15)

can be expanded to the boundary or any plane.

A. . ' *



II. Approximate Solution and Iteration
Equations

Let us consider Pr, Lec pDi,/), I (ps/p..) to be reference
constants. For practical reasons, let us limit our discussion

to the point of the revoluted body. The following type of

correction was made using the Mangler-Dorodonitsyn transforma-

tion:

-/T

where the subscripts e and w represent the wall surface and

outer fringe of the boundary layer values, respectively. Let

us define the following dimensionless quantities:

2 -2-, .- it - dT To T.

For cold walls, we can neglect the pressure gradient term
in the momentum equation.C3] Let us assume that the C for every

element is the same and use equation (11) in the energy equa-

tion, then the basic equations can be written as

q's +I,,iO (19)

:,, + S ,- 0 +t I, I + ... (20)

( + l l i )+ / (T + Ie

(21)Prt (Le - 1) iK, •(2
Jl

where Sc - P,/iL, 4A - Al + X AI, The boundary

soi

4I:



conditions for these equations are:

j,() - 0 1(0) - I. -
1,00)- 2• , .

Ra(0) - -, a(€o)m ", ((22)
ST(O) - 8iu g7(oo)

As for the s equations lacking in finding solutions to Ki,

equation (17) will be used as the supplement for equilibrium

problems.

We carried out integration for equations (20) and (21) and

wrote the result of integration of equation (21) in an iterative

form. We get

R4 -M(R, -R.)(;.S)(23)

4Wwhere - -7.90IC (24.)

(9, + LClb)'O' - (97 + LC ,b). -- 7#r - 974 + (e- (L.e - 1) G (')(0)1 ( 25 )
- (S.b, - Xb.))9(1/; f., Pr) + G('(,q)

( , +- (7, -gT-'+ [Le - (L - (26)i~ i  •#,(0; 1.0 Pr)

where 6 is the Blasius function:

'(: "") : d dn,;I (27)

Sz = Se or Pr. The detailed numerical table of 6 and SD is

given in Reference [2].

Ij'
( - (X.e. - X,)' Pr ""',( -IcrK,df d ) (29)

(KI, -3"'Pr" -",I 'Kjdqdn (29)

JIT



Under the situation that the boundary conditions are known,

equation (26) can provide the heat transfer which we are

interested in obtaining. The G(-) in the equation usually

has to be obtained through the iteration equation set (23) -

(29) and equation (17). The first order approximation of G(-)

can be calculated using the Kin when Le = 1. Calculation makes

clear that convegence in this form of equation is very quick.

When the temperature in the boundary layer exceeds 2000*K,

because the vibrational degrees of freedom for every element

are nearly all excited, C can be treated approximately as a

constant. At this time in equations (25) and (26) T--T/T,.

It is even simpler to find the solution.

III. Wall Surface Mass Ratio

and Heat Transfer

By integrating equation (20) from n = 0 to -0 +6(6

is a small quantity) and also noticing equation (24), we can

obtain the conservation of mass conditions of wall surface

- (kwB + k .)I(B + 1) (30)

where R is defined by equation (16); Kiw - represents the

mass ratio before injection (i = K or J), for non-injection

elements Kiw = 0; and Kiw represents the mass ratio after the

injection and chemical reaction.

B -- -- ' -- (31) I

(.8.0; sc .)I

Using wall temperature as a parameter, equation (30) and

equation (17) (or general catalytic conditions) form a set of

closed equations within which K can be solved.
iw c

With different mass injection conditions, we can

divide the wall surface onto three types of problems and they

-r
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are the "homogeneous reaction", the "heterogeneous reaction",

and the combination of the two above. For "heterogeneous

reaction" (such as the combustion of carbon), the quantity B

of interest in the combustion loss calculation can be directly

solved using the above method. This is because the Kiw of the

solid phase element is always 1 in equation (17) and it is 0

in equation (30). For "homogeneous reaction", the mass ratio

before injection should be given by the condition in the wall

(material composition, control method, etc.).

Using the approximation method to integrate the energy

equation (21) near the wall surface, we can get the heat trans-

fer into the wall as

8T

q. -0,0;.. 0T Pr'

X - wr-.(o") C H., r,)z~(32)

+ LVAh.1h - BLC'ILE)
where

AAh - , {Ki, - [(B + )Ki. - BK,._]1}h(P-t (33)

La7 -L + (Le - 1)(1 - G(oo)) + H,(G(O) - G,(00))] (34)

r I - G(o) + Ho[G(o) - Gjo)) ( 35 )

The latent heat of phase change is LE = HTW - HTW _ . The sub-

script f represents the frozen value. When frozen, G(o)-G,(o),

Lc,- Lcl,y, ow-GI(o) . yf was given in Reference [1].

The subscript s represents the stationary point value.

If we neglect the differences of parameters such as Pr, Le,

1, etc. between the equilibrium and frozen conditions, from

equation (32) we can see that the exponent y is the only para-

33
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- 0 - 0 Le I n

#80~~~ YMO *-14&I

-.- tf (Le - 1) 'q

#.- . l- (L. - 1. 4)

igure 2. Comparison of Theoretical and Experimental Results
Key: 2. Experimental points (arranged based on Le = 1151),
3. Experimental points (arranged based on Le - 1.4), 4. Theo-
retical curve (Le = 1), 5. Theoretical curve derived in this
work (Le = 1.4), 6. Heat transfer of carbon combustion in
decomposed air, 7. Heat transfer of decomposed air under same
boundary conditions.

meter to indicate the effect of chemical kinetic condition in

the boundary layer on the heat transfer. Similar to the kinetic

energy recovery factor which depends on the Pr number, Ler here

corresponds to the extent of the transformation of the excess

chemical enthalpy of the outer fringe compared to the wall sur-

face into thermal enthalpy. Because the generalized stiochio-

metric formula used can arbitrarily choose the reference ele-

ment, it is very convenient to select the element with concen-

tration at the wall surface to be zero (not zero in the outer

fringe) as the reference element in the calculation of equations

(32) - (35).

31/:
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Figure 3. The distributions of the dimensionless temperature
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the equilibrium boundary layer of decomposed air.
Key: 2. wall surface reaction equilibrium, 3. this work,
4. this work.
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This paper conducted heat transfer calculations for the

following examples. 1) The homogeneous injection of air, the

reaction equation is o,-w20, N 2k--2N ; 2) the homogeneous

injection of oxygen, which is the injection of oxygen in an

scattered flow of oxygen, the reaction equation is Os-20 ;

3) the homogeneous injection of nitrogen, the reaction equation

is Nq- 2N ; 4) the injection of carbon monoxide, the

reaction equation is CO+OM-CO2 ; 5) the injection of carbon

monoxide, the reaction equations are CO+Oq--CO,, 2O--O ;

6) the injection of carbon monoxide, the reaction equations are

-hCO1, 20w-, 0, 2N--qN. The results of example 1 at zero

injection agreed with the results of Reference [4] very well.

In Reference [5], they have found that the theoretical results

obtained by taking Le = 1 was far different from the results

they obtained from their carbon combustion experiment. If the

original data in Reference [5] were rearranged using the method

described in this paper and let Le = 1.4, then it was found

that all the experimental points were located either above or

below the theoretical values obtained using this method (see

Figure 2). Figures 3 - 6 provided the distributions of

K,, T, - T'. - along . Figures 7 - 8 showed the varia-

tions of fw' Te' and Tw with y. The two extrema in the distri-

bution of along n correspond to the maximum

exothermic and endothermic surfaces.

37



I CO

0.,

0.2S__0.___0.75_LOD

Figure 8. The variation of the chemical kinetic parametery
Ywith th oue rig emeaur e

Ke:0. example 3

93



IV. The Approximate Solution and Discussion

When Le is not too far away from 1, we can expand Ki and

gT around (Le - 1) and obtain:

K, - KP + (Le - 1)K' 1 + [(L-1j (36)
97 - g7' + OA - ,)SP) + o(J -L ]

(37)

Let us neglect all the small terms after the second order term

of (Le - 1), then G(-) can be solved from the energy equation

with Le = 1. From equation (21) it was found that the assump-

tions that all Cpi are identical and that (or !!L- I
piA C,

and Le - 1 are small quantities of the same order of magnitude

are equivalent. The concentration of the selected reference

element at the wall surface is zero. When r>v>O and s< 11 <N

(i,>Th,' is the value of n at 6 = 0.99), K,--O and Kj is
monoclinic in the region 1<V<ns . At this time, H-O, Lc"

has the same expression as in the frozen state:

Le I + (L - )( -G)

.1 or

7Y Ow I - G

Let us rewrite K jn into - Where Si-K,/K,, G#-(0e- )/(0,-O),
and 61 and e2 are the dimensionless temperatures corresponding
to and n2 , respectively. Let us assume that So-1 . This

assumption is suitable for the air decomposition problem when

the pressure is not too high. For other combustion reactions,

it corresponds to an assumption that reaction only takes place at

nI and n2 (corresponding to the maximum exothermic and endo-

thermic surfaces in Figure 6). Assuming Pr = 1 and using the

subscripts 1 and 2 to respectively represent the values at n

and n2 , we obtain the following by integrating G between the

2 -. i



regions nI to n

ic1- [gn + -( /, - (38)

Based on the reaction initiation and termination conditions

of the reference element at n1 and n2, the n value is determined

using the method of determination of the boundary layer thick-

ness. Furthermore, through Le = 1 and using the energy equation

with constant cp as well as equation (17), Bjl and 8J2 can be

solved. From here we can locate the corresponding f and fn
from the Blasius table. The calculation indicates that the

error is less than 5% comparing the y value obtained using the

approximation method used in this section with the calculated

results obtained in the last section.

When 8,-'O,Oja-1l , Gi-G, (Gj is consistent with the

results in Reference Ell). When p,-.'i, and P - 1 also,

G1 - 1, and i-O . This corresponds to the overlapping of

two reaction surfaces at the outer fringe. Similar to the

turbulent layer, a concentration type of discontinuity appears

at the outer fringe. The transfer process has no effect on the

heat transfer. In reality, situation can only exist close to

that condition. For example, when T = 6000 K (cold wall condi-e
tion) the n1 of nitrogen is very close to the outer fringe. It

is meaningful to have identical results when G1 = 1 and Le = 1.

* If we define the extent of exothermic reaction occurring in a

relatively high temperature region as the reactivity, then the

assumption that Le = 1 is only suitable for problems with strong

reactivity. When #I,-0 and pi _*o also, we can get G-f/,(;t.)

tThis corresponds to the situation that the concentration inter-
ruption surface is right on the wall surface. When the injec-

tion quantity is constant, the y value is maximum at this time

which also means that at this time the effect of the transfer

process has the most effect on the heat transfer. When the



pressure is lower and the temperature of the outer fringe is

higher, the oxygen decomposition reaction is approximately in

this situation. Corresponding to the -fw value of 0.25, 0.50,

0.75 and 1.00, the value of G1i-1/,(O;I.) are 0, -0.51, -1.52,

-4.0, and -14.1, respectively; and the corresponding yj are

1.53, 1.84, 2.34, 3.33, and 6.55 times the frozen value y jf,

respectively. This explains that when there is chemical reaction

going on, y may also be greater than yf.

When 0<-.<0.5 using J and $J2 as variables we can

linearly expand G around the two points 6jl = 0 and aJ2 = 1

to get

[i -- G-, + + ( - )( a- )

-- + [G . .(1- -1)(39)

In the above equation, because Gf is less than 1 and also less

than Ifwl and fw is always negative in injection problems, the

coefficients of Bjl and 6J2 are always positive. Therefore, G

increases with increasing %jl and BJ2 and Yj decreases with

increasing Bjl and %J2" This explains that: when the reacti-

vity is stronger or the reaction surface is closer to the

higher temperature outer fringe, the effect of the transfer pro-
cess on the heat transfer is weaker. All the factors which can

increase the reactivity such as reactions with high equilibrium

constants, increasing the injection quantity of the reactant,
decreasing temperature for a fixed reaction, increasing the
pressure, etc. can make yj smaller (refer to Figures 7 - 8).

For problems containing two or more reactions, we should

still calculate the contribution to the total e.thalpy change
from the enthalpy difference (K,-K,.)4,, for each reaction

based on equation (28). The higher the enthalpy difference the

more its recovery capability contributes to the total recovery

capability Ley . Since the mass ratio and enthalpy of formation

4'1



of nitrogen far exceeds those of oxygen in air, the y of

decomposed air with chemical reaction is usually smaller than

yf when the outer fringe temperature is sufficiently high.

With increasing outer fringe temperature, other reactions

taking place in the decomposed air would further promote the

deviation of y in the less than yf direction. The combustion

reactions in decomposed air are merely reactions between the

combustible material with the relevant elements in air. The

trend of variation of y is similar to that of the above discussed

pure decomposed air problem.

V. Conclusions

Using the generalized stoichlometric formularto eliminate

the non-independent reaction rates has the convenience of

arbitrary selection of a reference element. This method is

more routine than any other methods. Therefore, it is more

suitable for problems with complicated chemical reactions.

The heat transfer can be calculated using the set of given

iteration equations. Calculation and analysis both indicate

that: the increase in reactivity is the movement of the reaction

1.I to the outer fringe and it has the effect of decreasing the

influence of Le number on the heat transfer. For decomposition
of air and combustion reactions in decomposed air, the effect of
Le number on the heat transfer is less than that at the frozen

state.

In the study of non-equilibrium problems located between

ik the equilibrium and frozen states, the difficulty is not in

solving the boundary layer equation itself. Rather, it is

difficult to provide the accurate reaction rates. When the

amount of injection is not too large and near the stationary

point, the difference between the equilibrium and the frozen

states is not too significant. Therefore, under such condition

A&I



the non-equilibrium condition does not have to be considered.
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Abstract

To simplify our problem, a stoichiometric formula is derived for boundary layers
with mass injection and chemical reaction. As an example, the solution of chemical
equilibrium was analized. Results of calculation were found to be in close agreement
with that of experiment [5], and with that.of [4] when there is no injection. Finally,
it was indicated that the effect of Lewis number on heat transfer decreases as the

capability of heat generating reactions increases.
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THE MEASUREMENTS OF THE STATIC AND DYNAMIC STABILITY DERIVATIVES

OF CONICAL MODELS IN THE SHOCK TUNNEL

Ma Jia-huan, Tang Zhong-heng, Zbang Xiao-ping and Guo Yan-ping
(Mechanics Research Institute, Academy Sinica)

Experimental research of shock tunnel for the development of

hypersonic gasdynamics has been conducted widely. Due to its

extremely short duration, there exist certain difficulties in the

measuring technique. Hence, it is limited to the static aspect

when the stability of a flying vehicle is studied. In fact, the

oscillatory motion of the flying vehicle after reentry directly

affects the aerodynamic load and the aerodynamic heating. Hence,

the study of dynamic stability is a very essential issue. For the

experimental investigation of the dynamic stability, the model free

flight method which avoids completely the disturbance of the sting

displays its unique superiority. Trial efforts were made in this

field but have not been successful due to the short duration of

the shock tunnel [1]. To extend the range of application of the

shock tunnel on the one hand, and to initiate the experimental

study of the hypersonic dynamic stability on the other, we spent

some effort on modeling and angular measurement and obtained 1.5-

2.0 cycles of pitching angle motion e = 100 and 110 cones in ac
hypersonic flow of M. = 9.0 with the model free flight method.

Through data processing technique, not only their static stability

derivatives are obtained, but also the preliminary result of the

dynamic stability.

1. Experimental facility, measuring technique and model

The experiment is conducted in a JF-8 reflection type shock

tunnel. The air flow in such a tube is motivated by the mixing

and combusting of hydrogen and oxygen. The internal diameter of

the shock tunnel is 150 mm and the diameter of the test section is

1.2 m. The typical operating condition for the experiment is:

Received 4 May 1979.
44

I 1 :*-



= 9.0, Re. = 1.6 x 106 and a quasi-steady operating duration

of about 10 millisecond.

The first step of the free flight method for force measure-

ment is to hang the model in the test section of the tunnel with

extremely thin nylon wires at prescribed initial conditions. As

soon as the initiating shock scans through the test section, the

nylon wires are burnt out and the model is left exposed to the

aerodynamic force and the gravity only, without any other support.

The free flight motion is then satisfied. The motion of the model

at this instant can be recorded by means of synchronized high speed

photography. By analyzing the data and the motion of the model,

the aerodynamic characteristics can be determined. The "Strobokin"

high speed flasher with flashing frequency of f = 5 kc/s is used.

Each single flashing pulse is about 1 sec. The motion history of

the model is recorded by the revoling drum camera. The duration

time of the flash is controlled by a timer and is corresponding

to the quasi-steady operation time after the tunnel is started.

In order to identify the flow state corresponding to each film,

the measured signal of the pitot pressure in the test section of

the wind tunnel and flashing signal must be recorded simultaneously

on the oscilloscope (see Figure 1). The complete set up of the

testing system is shown in Figure 2.

A model of very small moment of inertia of rotation is one of

the basic requirements to obtain relative more periods of angular

motion in the shock tunnel and hence to obtain the dynamic deriva-

tive. During the quasi-steady operating time t of the wind tunnel,

the period of oscillation of the model is

*-- 1Cv.- .S.* (1)

and within the same duration, the flight distance of the model due

to drag is
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(2)

By direct substitution, it can be observed that

SFigure 1. Pitot pressure Figure 2. Schematic diagram
Sand flashing signals of testing system
4upper line: flashing impulse 1-waiting-type drum camera; 2-photoelectric

signal diode; 3- preamplifier; h-preamplifier;
lower line: pitot pressure 5- two-channels oscilloscope; 6- pitot head;

signal T- transducer; 8- trigger delayer; 9- pre-
scanning speed: 2 ms/cm setting circuit; 10- digital freq. meter;

11-flash light; 12- source box; 13- controller;
14- timer; 15- electric source;

In the above equations

t quasi-steady operation time duration

q dynamic pressure of the flow

d characteristic dimension of the model, that is, the
base diameter

S the base area of the model, S --

Wm the mass of the model syst

I the rotational moment of inertia of the model about
the lateral axis through the center of gravity

Cml the static stability derivative of the model 6

the effective drag coefficient of the model under the
Cneffetest condition
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The model should be designed such that r does not overshoot

the range of the camera lens while maintaining the maximum poss-

ible periods of angular motion. From Equation (3), it is ob-

served that for a certain aerodynamic profile under a specified

flow condition, the model mutt acquire a sufficient amount of

mass with a minimal rotational moment of inertia. Hence, the

structure of the model is generally composed of a heavy core with

a light outer shell. The outer shell is made of very light poly-

mer material and lead beads are used as core to regulate the posi-

tion of the center of gravity of the model. The rotational moment

of inertia obtained is (1-2)xl0- 3 gm-cm-sec 2 . The geometrical

dimension and the physical parameters of the model must be mea-

sured accurately before conducting the experiment. Typical dimen-

sions of the conical models used in this experiment is listed in

the following table (Table 1):

TABLE 1. Typical geometrical dimensions and physical parameters
of the conical models

Model Geometrical Dimensions I Physical Parameters
type model code semi- length (base W Rela- Rotational

vertex L diameter tive moment of
angle D cm W om ctr. inertia
ec deg of I gm-cm-sec

grav-
ity
XcR/L_

conical 10 - 7 9057? 5.67 2.01 1.726 0.39 1.52xi0-3

conical 11 - 4 100571 5.14 1.97 1.494 0.41 l.llxl0 - 3

2. 3athering and analyzing the data

To improve the precision in the detection of the angular

position of the model, the coordinated reading method is employed.

12 points are detected on the profile of the model image in the

HCZ-I three-dimensional detector and the probability error of the

orientation angle is about ± 0.05'.
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For the plane free flight motion of axi-symmetrical model

without rotation, the law of angular motion can be written as

t_( . + , . ¢ C_. (4 )

where
Mw = Me-- derivative of moments due to aerodynamic drag,

if expressed in terms of coefficients:

(C +.)!-.
mq V

Ma -- derivative of static pitching momentC.. 'dq.S

M -- additional moment due to slight asymmetry

Reference [2] has made detailed description according to the

three-cycles theory. Since under general condition,

(M + M i, ( .&
2 1(5)

Hence, after linear assumption for angular motion of single degree

of freedom, Equation (4) may have solution of the following

simple form:

S- K • •os(ca + 8) + K, (6)
where

41 -

[(C'i + C'.) C'.1 
* 8

81 .*V -:' 8

As a special case of the three-cycle theory, this solution

can be represented by a rotating vector with the pitching angle e
as the projection of this vector on the vertical axis. The mag-

nitude of the vector is K. It rotates at an angular velocity of

w and 6 is the initial angular position. The K in Equation (6)
3

is a small adjustment angle due to the moment Ma
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With Equation (6) and the data set of angular motion of the

model (6i,t i ) 1 1,2,3,''' taken from the experiment and employ-

ing the least square method to match them, the coefficients in the

equation can be determined.

The convergence criterion in the iterative matching process is

I SsR$SSR, - I I < 10- (9)

where

SSR- ( 9 - K. -oCS(a.tI + 5.) + .I(0
J- (10)

in which the subscript o indicates the first approximation value

of the parameter, while 2 and 1 indicate the results obtained after

two successive iteration. After the iteration is completed, the

static and dynamic stability derivatives of the pitching motion of

the model can be determined according to Equations (7) and (8) and

the w and X obtained.

3. Results and discussion

Table 2 lists the experimental result of' static and dynamic

stability derivatives for ec = 100 and 110 cones at M, = 9.0.

Table 2. Experimental result of static and dynamic stability
derivatives for ec = 100 and 110 cones

test conditionj A...010 motion parameters aerodynamic mat.hing

'dynamic I, obtained derivatives error

test no. pressur model, initial W Cpressur e no . angle of V , 4 + '
1469 0.182 10-7 6.attack 0.0135 0.119 -10.69 1158 0.006 -1.76 -3.4 0.00056 0.0025
1470 0.192, 10-4 10. 0.0154 0.158 -18.82 1061 0.0079 -1.62 -6.9 0.00076 0.0031
1478 0.17 10-3 120 .0151 0.169 -23.00 1200 .0089 -1.75 -7.2 0.00229 0.0047
1476 0.183 10-6 16' P.0141 0.260 -3.84 977 .0072 -1.53 -1.2 0.001811 0.0042

1432 0.186 11-4 4" ).0117 0.078 -9.08 1249 .0091 -1.54 -2.2 0.0005 0.0027
1441 0.1t9: 11-9 12°  ).0220 0.189 -15.36 1201 .008 -1.44 -3.9 0.00628 0.0084
1451 0.1941 11-1 160 ).0147 0.239 -12.3 1170 .0085 -1.42 -3.2 0.00123 0.0041
1471 0.195: 11-6 106 ).0060 0.161 -12.79 1218 .008 -1.50 --1.3 0.00433 0.0063
1472 0.192 11-7 20 °  ).0103 0.287 -10.79 1200 00088 -1.46 -2.7 0.0075 0.0063
1474 0.196, 1-1, 260 .016 0.428 -12.71 1192 .003 -1.551 -3.5 0.00191 0.0047
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The table does not only list the motion parameters and the

aerodynamic stability derivative of each experiment, but also

the probability error o of matching. It reflects the deviation

of mathematical model from the actual angular motion. It is given

by the following expression:

(11)
6-0.6745 '"

N is the number of unknown coefficients during the matching pro-

cess. Here N = 5, n is the number of data points involved in

the matching.

As a typical angular motion of the model, experiment 1469 is

sketched in Figure 3. The solid line in the figure shows the

motion based on the substitution of the gasdynamic parameters

obtained from the matching into Equation (6).

The static stability derivative C indicate that within thema
test range, the value of Cma is independent of the initial angle

of attack. It is mainly affected by the location of the center

of gravity of the model. This shows a relatively good linearity

of the static stability of the conical models. The results are

* plotted in Figure 4 and the values are found to be consistent with

Newton's theory which governs the solid line in the figure accord-

ing to the following expression [3]:

C..-2-8 zaL ctge. - -)(.12)C3 2L

The result for the dynamic stability derivative can be sen

in Figure 5. It is observed that the pitching resistance moment

coefficient obtained is much higher than the Newton's value and
that the dispersion is relatively large for different experiments.
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Figure 3. Typical detecting angular motion and
matched angular motion
o detected motion -n- atched motion

M,,=9.0, Re.=1.6Xl0A, d -0.0085, test No. 1469, model no.10-7

Cma=l7 Ymq+Cma=~.

2.0- - M=9.0 C~-10,

Newton'sNewton's

value value

0.5 40 OAS 030 IL40 0.45 0.M X.,IL

x 'o'"I lo- 
Newton's

Neto n's value
LS[ ~~~value ________

.0 0.35 0.40 0.45
X,,/LRe-x P/

Figure 14. Experimental Figure 5. Experimental result
result of static stability of dynamic stability for
for 6,=100, 110 cones e,=100,110 cones

The dispersion of the experimental results 1s closely related

to -',e inaccuracy in tne determination of flo-w parameters. AS
indicated by Equation (8), the final value of the aerod,17narnic

resistance coefficients, besides based on the resistance fa( ors

obtained from matching, are also determined by the dimension of

model and the flow parameters. The determination of the dynamic

pressure value is especially difficult due to possible error of
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relative large magnitude. The general trend reflected by several

sets of experimental data is much larger than the Newton's value.

The causes of this phenomena requires further analysis. From

the experimental result of the effect of Reynold's numbers and

the decrease in frequency on the aerodynamic resistance given by

[4], we observe that the dynamic stability multiplies with the

increase in frequency at low Reynold's number. Hence, with

ReD = 3xl0 based on the characteristic length of the model in
wd

our case and with a low frequency f = - 0.01, pitching resist-

ance derivatives higher than the Newton's value are expected con-

sequence. Furthermore, it should be pointed out that the models

used here are not sealed at the base. Hence, there practically

exists a large concave base which has a considerable effect on

the aerodynamic resistance coefficient. As mentioned before, the

dispersion of the resistance coefficient is quite considerable

and the results are essentially preliminary. However, such dis-

persion does not overshoot its order of magnitude. Also, the con-

sistency in the characteristic of the dynamic stability reflected

by different experiments demonstrates the possible prospect of

the measurement of dynamic derivatives with the free flight methcd

in the shock tunnel.
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LEAST SQUARES FINITE ELEMENT ANALYSIS OF STEADY HIGH SUBSONIC

PLANE POTENTIAL FLOWS

Jiang Bo-nan and Chai Jia-zhen

1. Method. The fundamental dimensionless equations for

steady, subsonic plane potential flow is

(1 - ,.!-0 - -u + (.f _ (m, + 64)]

where x and y are the orthogonal coordinates normalized by the

characteristic length of the flow field, u. v and a are respect-

ively the velocity components and the local sound speed normal-

ized by the sound speed of the free stream, M,, is the free stream

Mach number and y is the specific heat ratio.

The boundary conditions depend on the particular problem.
: e will employ the iteration method to find the numerical solution

of the quasi-linear first order partial differential equation (1).

At each iteration cycle, the least square finite element method is

used to solve the linearized equation set. Both the variable stiff-

ness and the constant stiffness models are tried out. Their diff-

erence is reflected in the linearized equations, that is, the coeff-

icients are variables with the former model but are constants with

the latter.

1) Variable stiffness method. Let

Au.(w~.f 3
1 , B..(1)~ wa~(2)

Then Equation (1) can be rewritten as

,~4, + Br, + ¢(u, + ,, -0, MIw,- (3) .
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Coefficients A, B, C are regarded as known quantities and

are determined by the velocity field solved in the preceding iter-

ation cycle. The new values of u and v are determined with the

following method. Firstly, the flow field are divided into finite

elements. In order to simulate boundaries of complicated pro-

file, quadrilateral elements with eight nodal points are employed

[1]. The two velocity components at each node are taken as the

main unknowns. The coordinates and the unknowns of any point in

the element can be expressed as

t}1

where Ni( ,n) is the shape function, xi, Yi are the coordinates

of the i th node of the element, Ui, vi are the unknown velocity

components of the i th node of the element.

Equation (5) is practically the expression of approximate solu-

tion of equation (1). Generally, Equation (1) are not satisfied

exactly no matter how ui and vi are chosen. That is for any point

in the element, there exist residues:

4,- . L(ANj., + CN,.,)uj + (Ni., + CJNj.,)l(6/ml (6)

- , (Ni.,m, - Nj..v,)

Employing the least square method [2], ui and vi are chosen such

that the residues are minimized, that is to construct a second order

functional (assuming that there is only one element)

I (RI + aRdda (7)

Received October 17, 1978.
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KIn the above expression, the integration is conducted in
the region S and a is a positive constant. Generally, a = 1 is

e
taken. This indicates that the continuity equation and the irro-

tational equation are equally important. Taking very small value

of I with respect to ui, vi, the linear algebraic equations with

respect to u i , v are obtained:

FK W ( I# I (8)
K. 1I I P.),

(K&I ~ , (Ku .. (ul

Key: (1) cemetery

In which the sub-matrix of the stiffness matrix of the element is

rA'N,..N,.. + ,4CCN..,. +- A,+,N,.,,I + ACW ,..,
+ N,,Vj. + (Cl + a) 1.N, + Fab,.,(')NN.S, +JI. A BN+.,N., + A CN,..NiV.a B' 'Wi.,rl,., + 5C(N,.,ri.. j _9

+ BcN,.,N,.,+('-)N,.N,., + N,. ,.,) + (Cl + a)N,.N ,..J

The integral in the above equation is calculated numerically
by 2x2 Gaussian integration formula. The sub-vector {F i } of the

loading vector of the element is the zero vector.

For aggregates of many elements the overall rigidity matrix

and the overall load vector can be obtained on the basis of

normal aggregate rules. After considering boundary condition

corrections, the entire set of equations can be obtained. It

should be noted that the entire load vector which has undergone

boundary condition correction is no longer a zero vector.

"o CnStarnt stif~ness methcd.

Equation (1) is rewritten as

we+,--fS s,o--.-0 (10)

where

-[I + (IO.- C. + I) [us. +w~, + ,.) + e,1]
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Here f is known, and is determined by the velocity field given

in the preceding iteration. Taking A = B = 1, C = 0 in Equation

(9), the expression for the stiffness sub-matrix of the constant

stiffness method is obtained. The sub-vector of the loading vec-

tor of the element is

4Z -(12)

2. Some problems in the calculation.

Since the velocity component normal to the solid boundary is

zero, the inclined boundary condition is utilized, that is, at the

nodal points on the solid boundary, the tangential and the normal

velocity components are taken as unknowns.

The symmetry of the stiffness matrix is favorable to the cal-

culation. The following methods are used to solve the linear alge-

braic equation: the triangular decomposing method of variable band

width one-dimensionally stored total stiffness matrix and the elim-

ination method.

Set f = 0 in Equations (10), and the flow field obtained by

4 solving this incompressible problem is taken as the initial field.

At all the nodal points of the field, the problem is considered

convergent if the relative variation of two successive values of

the dimensionless density P -1 . (
.
- (

X
+ )

is less than a given small quantity e.

3. Numerical examples

Several typical examples are calculated with ALGOL 60 language

on the TQ-16 machine.
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1) Flow past a circular cylinder. The flow condition at

seven times the radius of the cylinder is considered undisturbed

from the free stream. One quarter of the circular cylinder is

divided into 2x2 or 4 x5 elements. e is taken as 0.0001 and 0.0009

respectively. The calculated results are shown in Table 1 and

Figure 1. It can be observed that even when M. reaches the crit-

ical Mach number 0.42, the variable stiffness method is still con-

verging rapidly.

Table 1. Number of iterations for flow past circular cylinder:)o of
Calculation nter- M 0.20 0.30 0.40 0.42 0.45

scheme-", ations

constant s-,iff-
4 ness method 2 3 8 32 no convergenceelements s

variable stiff-
,nhess method 1 2 3 4 4 7

constant stiff-
20 eww method 3 6 27 no convergence

elements ariable stiff-
_ess method 2 2 3 3 5

L2

4fa-0.42

1.0-

MO.
*1 0.6 '

MO-0-20

0.2

iI 0.0:

* ~*0 Is 3 54 go.90

Figure 1. Mach number on the surface of the circular
*cylinder

o finite element (variable stiffness method)
-result from reference £3]



2) Flow past a symmetric airfoil. The symmetrical NACA

0012 airfoil with zero angle of attack is calculated. The upper

half region of the airfoil is divided into 5x12 elements and

= 0.0001 is taken. Convergence is achieved with the variable

stiffness method after six iterations (Figure 2). There is no

convergence if the constant stiffness method is used.

4. Discussion

With the above presentation, it can be concluded that the

least square finite element method is feasible for steady sub-

onic potential flows. The variable stiffness method is e3pe.ia.!.ly

suit.able fcr high subsonic flows.

GA

*0 0 1 02l 0 04 0.JS CIS OLT 0U 0.9 .i

Figure 2. Mach number on the airfoil surface
o finite element (variable stiffness method)
- result from reference [4]

NACA 0012 MW = 0.72 00 angle of attack

Nowadays many finite element methods [5] have been proposed

for solving problems of compressible potential flows. The stream

function tP or the potential function 0 is considered as the main

unknown quantities in most methods. There are several advantages

of the present method. Firstly, the velocities at the nodes are

obtained directly, avoiding any numerical differentiation. Hence,

relatively coarse mesh can be employed. Secondly, the difficulty
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of determining the density at high subsonic Mach numbers when

using p is also avoided. Thirdly, the boundary conditions are

simpler, in contrast with the cases when 0 is employed. Fourthly,

the continuity requirement of the shape function is reduced from

C' to CO as compared with the least square method for ' or 0.

Finally, we thank Professor Lo Shi-Jun for his valuable advice

and Mr. Sun Huei-min for revising the computer program.

REFERENCES

[1] Zienkiewicz, 0. C. The Finite Element Method in Engineering
Science, McGraw-Hill, (1974).

[2] Edson, E. D. Int. J. Num. Meth. Engng., 10(-1976), 1021.

[3] Imai, I. Proc. Phys. Math. Soc. Japan, 23(1941), 180.

[4] Lock, R. C. Test cases for numerical methods in two-dimens-
ional transonic flows, AGARD-R-575 (1970).

[5] Shen Shen-pu. Ann. Rev. Fluid Mech., 9(1977), 421.

59



THE AERODYNAMICAL ANALYSIS OF BODY IN HYPERSONIC SOURCE FLOW

FIELD

Ling Guo-can
(Institute of Mechanics, Academia Sinica)

The bypersonic source flow field is a typical non-uniform

free stream flow field. Many high speed, high enthalpy experi-

mental systems, such as shock tunnels equipped with conical

nozzles, the gun wind tunnels, the electric arc wind tunnels,

etc., are characterized by hypersonic spherical expansion. Cer-

tain external flows around bodies also display the same character-

istics. Simple but accurate analytical methods are required to

determine the aerodynamic force on the body and the effects on the

pressure distribution and various aerodynamic characteristics for

such non-uniform free stream condition. Some efforts have been

made [1-7] but no satisfactory analytical results have been pre-

sented so far. Based on the characteristics of the hypersonic

source flow field and the simple form of the potential function,

the present study obtained various aerodynamic coefficients by

means of Newton's theory. Under the condition of small angle of

attack, the analytical results are satisfactory. Due to practical

requirements, analysis on the effects of the non-uniformity of the

free stream is emphasized. Agreement between the calculated results

and the experimental data is satisfactory.

1. Hypersonic source flow field

At hypersonic conditons, M>>l, and when M2 (y-l)/2:>l, the

following relations among physical properties in steady, ideal

point source flow are obtained by integrating the basic equations:

V - constant, P - , --- (r/o 6)', M M(r/r) ".4  (1)

when r is the distance of any point in space from the point source.
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The subscript denotes certain reference values in the flow field.

Note that the velocity of the above flow field is almost constant.

Hence, the corresponding potential function varies with r only,

that is 0'-1rV+C This potential function provides some con-

venience for the analysis following. If the point source is

located at the coordinates (i0),on the symmetric surface xoz of

the Cartesian coordinates Oxyz, then the velocity potential and

the velocity distribution should be:

- +. + '+,+ (+ +C (2)

V. - (z + Lcosca)VL-1, V, - yVLV'& Ve (4 + LOsia)VL - '
L - -I(x + Le cos a)' + yl + (s + Leda )

in which L0 is the distance from the point source to the origin,

and a is the angle between L0 and the x-axis.

2. Pressure distribution

Let the geometry of the body of revolution in the flow field

described above be rb--'(9) , and the unit vector normal to the

body surface be rib - Sinai - CoWacOpj - Oa~SiPk, a - -Cr(dr#/I).

The elevation angle of the line Joining the point source and the

vortex of the body from the Ox-axis is defined as the angle of

attack a of the non-uniform free-stream. The Newton's hypersonic

impulse theory gives the pressure coefficient, C,- p&(V" -4Y/q.,

of any point on the upwind surface of the body. The subscript b

denotes the local freestream parameters at any point on the body

surface given by Equations (1) and (2), and x,y,z satisfy the equa-

tion of the body profile. qo POV 2/2 is the local free stream

dynamic pressure at the vertex of the body. :f the distance L

from the point source to the body vertex is taken as the character-

istic length of the flow and the reference value for normalization,

then the pressure coefficient at any point on the upwind surface of

the body is
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- 2[(r + ,sa)? - in- ,auinP '+ n l + V. + 2ic, , + P + V a"O (3)

Apparently, when the point source is infinitely far away from the

body, the above expression reduces down to the well-known Newton's

formula of the uniform flow.

For conical bodies --itge, and the pressure distribution

on the conical surface is

C PS -- I C U " 2[1c "ain - siaa ws agin "J(
L-1-4 '+ 2icosa++ ih'a + 2itguiad ]JI i

The subscript U denotes the uniform free stream values. Hence,

there exists a simple transformation relation between the pressure

coefficient on the conical surface in source flow field and the

pressure coefficient in the corresponding uniform flow field. The

former can be expressed as a function of the uniform flow values

and L, the dimensionless distance from the point source to the

conical surface. The pressure coefficient decreases along the

conical surface, hence losing the characteristics of conical flows.

This effect is greater when the point source is closer to the body.

For a spherical surface of radius -R'-(R-Y, At
zero angle of attack, the pressure coefficient on the upwind sur-

face is

2[t(,dun - 1) + nO]'P
[1 + 2A(1 - unO) +j2W'(l - g a)J (5)

where e is the circumferential angle as shown in Figure 2. At the

stagnation point, e = iT/2. The region of action is

da11/o+ 1] 4a4/2.

Figures 1 and 2 present the calculated relative values

(CPU 'C,)/C,, and CCo,,K*.|, of the pressure distribution on the

conical surface and the spherical surface respectively.

This paper was received on December 18, 1978.
1) This paper was presented at the Chinese Institute of Mechanics' First Convention
of Shock Tunnel, November 4-12, 1978.
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0.2

Figure 1. Pressure distribution 7on the conical surf'ace (a~=00)
-calculated values according to Equation (4)

*U1-10.31 A-16* gun wind tunnel experiment[]
o 11-9.5 8-i5* shock tunnel experiment (large cone) [3]

At~ - 9.3 * -15' shock tunnel experiment (Sall oe) [3]
M -. 7 - to, shock tunnel experimient

* =17.5 0-1i5. shock tunnel experimnent (large cone) [3]
a17. #-15' shock tunnel experiment (small cone) [3]

0.93

041

10 30 50 70 90

Figure 2. Pressure distribution on the spherical surf'ace (a=cO)
---calculated values according to Equation (5)

* -o.oog U - as.g stphere-cyl inder emperirrent [5]
A 1-0.0327 Ad m5.6 sphere-cone experim~ent
Jim 0.0301 41-1031 sphere-cone experiment [9]
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3. Aerodynamic coefficients of typical bodies

By applying the coefficient formula (3) obtained, the nor-

mal force coefficient, axial force coefficient, pitching moment

coefficient and the pressure center coefficient of the body of

revolution at any angle of attack can be calculated directly:

CK,~ 3 3 : CJ sin #d~dj, C. i- I"IIFdd

C. . : s: -,~ f)sn ~ifiV CU4/CME (6)

where ic,-xc,/L,i and rB are the body length and the base radius

respectively. The upper limits of the integrations TP, are

the dividing line of the upwind and downwind surfaces and are

determined by the zero pressure condition on the body surface.
For conical bodies, a4D, -- u/2,iml;a>,;.- ui-(,ga/Ig,),im1*

For spherical bodies, i, - + 6.Jj)i]_(A - I(,inr,),

For small angle of attack when

For small angle of attack, the higher order terms of a can be

neglected. Also when the point source is considerably far from

the body, the distance of any point on the body from the point

source is almost equal to its projection on the x-axis. Simple

analytical expressions for aerodynamic coefficients are obtained

through integration. The position of the point source still has

a sufficiently large range in these expressions. For cones at

0<0 , there are certain correlations between the aerodynamic

coefficients in the point source flow field and the corresponding

* coefficients in the uniform flow. The normal force coefficients,

axial force coefficients, static derivative CNo, pressure center

coefficient, pitching moment coefficient in the point source flow

field can all be expressed by the product of the corresponding

value in the uniform flow field and the correlation function 9,(I)
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.1

(7)CNS - CNUqL1(1)1 CyJ - CmTaTl, CM s CNOUqi 4Cl)
Tr- ;cUq,(l). C. - C.U9p1 (l)'P3(I) (8

Cmu - 2ccos8, C - (c? + Zt g)ooa2D Cu 9 20 8 (

c,0 - 2/3 sc's, C.u -" 4/3 a

9,() -(3 + 1)/3(1 + l), 9i(l) -(1+ 1/J1)- (9)

The correlation functions V,(I),q'I) depends on the dimensionless

characteristic quantity 1, only, which denotes the relative posi-

tion of the body in the point source flow field. Figure 3 shows

the variation curve of I-q(J)versus 1 The relative variation

of the aerodynamic coefficients due to the non-uniformity of the

free stream under the condition of different point source posi-

tions can be determined according to this curve.

0.6 0.15S

O.S 0.13 
I )

0.11 ( o
0.4

0.09

0.3
0.01

.0.2 0.05

0.1 0.03

0.01

0 0.1 0.2 0.3 0.4 as

Figure 3. 1 - lp(l) curve
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SYMBOL CONTEW __ M Ref

0 pressure center experiment 0 7 small 16 5
p pressure center experiment 0 6 small 20 5

* pressure center experiment 0 10 7,5,10 8.2
o pressure center modification calculation 0 small small 5
& pressure center modification calculation 16 2-15 7

normal force coefficient experiment 7 5 16 5
O axial force coefficient modification calculation .00 16 2-15 7
v normal force coefficient modification calculatio 0.00 16 2-15 1 7

For the spherical section and for .4(i+I)"  , the following

expressions can be obtained after some complicated integrations:

CM, 4R'(1 + 0-- .)J{R, + R/. + R, I I + 21( + )IX.1

+ R, _+ R, 1I + 2T?(I + jt.) (I[ + 2R (I + jI)I,]'

C+- - , + S;. + SA, + &41t + 2AO + N).1 (10)

1I + 2 (O + RA4

where

R, - 2. + 14R + 201 + 24'+8 ,. Ra-- 2($. + A + 2A')
, - -(3 + 12A+16'+S,), R4 -.- 3+8A+40'+40R'+16R,)
R,- 0.5 + 4R + 12N' + 16' + 8OR

S, - 1+71 +2011+30P.1+2411+SRI, $,in4R +20Wj+32fl' +2OR4'+4WRs- -(ZN', +I 6Ne + 6, + ii,), 's, = -(3 +15N+28N',e4A,+IR,) (11)

S,i- -(I + 7R + 2 oR' + 244 + #I') ,
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2is the thickness of the spherical body in the x-direction.

When -. ~,the above -imits become the Newton's formulae in the

uniform flow. Figure 4 shows the variation curve of the deriva-

tives of normal force coefficient and axial force coefficients of

the spherical section vs. the point source position.

0.7

&0 1 03 0.3 9.4* OJ

Figure 4. C aand C Ts of the spherical section

For a slender cone-sphere combination of bluntness n at ci.6,

and for sin 61-6, cos 5'ul, the following can be obtained:

Cjjoiw~a Ca,., + Ca,. 1 , C 7"W. m C 31948 + Cn,, Ca,... 4  C tOhIeAII + C., 1 (12)
gc,...,m~ [c..' '~ +ca/caa1

and
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:1 cs.., - A 4 Fy ./8)9'(7, Pa. 8)

3

Ca.. - t (0 + 28')K,(07, Ra/5)Q'(v, la 8)

C.8, - CNaiCI i,
Kbi,, Rog(..[le) I ,-- 8t ) :.

3 K61. R/e)I -40 -I ) --,(I - ).
I K,,,.e./. - ;s e./) [ _,'(3 + ,,I,/#XI + It./0',

+1 -I-2C/8)- 1 a - '" I/.l , /)
3,18) 3 C)"'13)

01+ R*aly I Rq?/#)lt'.901, Rl 1E8) - 3 + Llai" n'+ l "

The above results indicate that the aerodynamic coeffi-

ciencies of a slender cone sphere of definite profile in the

point source flow field at small angle of attack depend only on

the dimensionless parameter Rn (or RB), which characterizes the

relative position of the body in the point source flow field.

4. Comparison of the results

Figures 1-3 and Figures 5 and 6 show the comparison between

calculation results and the experimental data. The force mea-

surement accuracy of current impulsive wind tunnel (about 5-10%)

is one order of magnitude lower than that of the ordinary wind

tunnel. Some of them reach around 17%. Since there is a lack of

experimental data for single spherical section, Figure 2 adopts

the results from the sphere-cone and the sphere-cylinder. Hence,

the data close to the stagnation point at the head should be taken.

The accurate solution of the pressure distribution on the cone of

the uniform flow is taken from [10]. The pressure distribution and

the relative variation of aerodynamic coefficients due to hyper-

sonic point- source free stream calculated here are found to match

with the experimental results. The calculated aerodynamic coeffi-
cients of the sphere-cone combination also agree quite well with

the experimental results. They are also consistent with the modi-

fied values given by [5,7]. Compared with the uniform free stream

condition, the source flow causes the pressure center of the sphere-cone to move

forward and the normal and axial force6 oefficients to decrease. For slender

- 6-



t4 4

O* C u,: 1.

Figure 5. Normal force coefficient and pitching moment coeffi-
cient of sphere-cone

*cal cul ation by Equations (12) , (13)
*gun-wind tun~nel experiment [7] 6 =12.50 n =0-0.5 a--2-15'
£gun wind tunnel experiment [7] 6 =160 Ti =0-0.5 a---O-16 0
*gun wind tunnel experiment [7] 6 =200 n =0-0.5 a--0-1710

.~uniform flow values zmodified by the present method
ouniform flow values modified by [7)
Auniform flow values modified by [7]

a3 uniform flow values modified by [7]
-- experimental values of uniform flow [12]

s 10 is5M

Figure 6. Pressure center of sphere-cone
A shock tunnel experimental values
A pressure center of the uniform flow modified by the present
method
n0.15 at=101 M=8.2, 13.5 n-0.15 a-10, m-8.2, 13.5
-alculated value according to the uniform flow theory

n-0.15 a1 00
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cones at small angle of attack, the pressure center moves forward by 1- I).

When J>0.03, that variation is more than 1%. The relative

variation of both the normal and axial force coefficients
is i-VI(l) When I>0.04 , the variation is more than 1G%.

For the hypersonic uniform free stream problem, the Newton's theory

is effective in determining the pressure distribution and aero-

dynamic coefficients, provided that the shock stays close to the

body surface [11,12]. For hypersonic source flow field, it also
displays a satisfactory accuracy in analyzing the aerodynamic

effects due to the non-uniformity of free stream.
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